Genome Function

Thematic program focuses on understanding the mechanisms cells use to access the information in their genomes to grow and develop, to respond to the environment, to safeguard their genetic information, and how errors in these processes can lead to genetic disease.  The program includes study of DNA sequence and genetic variation, chromatin dynamics, gene regulation, epigenetic modification and inheritance, nuclear organization, and genome stability.   Investigators use a variety of established and cutting-edge approaches to interrogate genome function in multiple organisms including flies, mice, and humans.   Our interests include: 1) fine-scale mapping of non-coding genetic variation that affects enhancer function to determine the mechanisms by which disease-associated alleles induce atherosclerosis and hypertension,  2) examining how chromatin compaction alters nuclear shape and gene expression in laminopathies such as Emery-Driefuss Muscular Dystrophy and Hutchinson Gilford Progeria Syndrome, and 3) understanding how epigenetic changes cause hyper-mutation and chromosome damage, pushing healthy cells toward a cancer disease state.

Primary Faculty
Director of Graduate Studies, Genetics GIDP
Associate Professor, Cellular and Molecular Medicine
Scientific Director, Cancer Biology Research Program
(520) 626-7979

Analyzing genomic instability in cancer susceptibility.
Associate Professor, Cellular and Molecular Medicine
Member, Genetics GIDP
Member, Cancer Biology GIDP
(520) 626-9545

Exploring the connection between epigenetic instability and chromosome damage.
Associate Professor, Cellular and Molecular Medicine
Associate Department Head, Faculty Development, Cellular and Molecular Medicine
Associate Professor, Molecular and Cellular Biology
Associate Professor, BIO5 Institute
(520) 626-3925

Understanding cellular mechanisms that regulate centrosome duplication, nuclear organization, and genomic integrity.
Assistant Professor, Cellular and Molecular Medicine
Faculty, BIO5 Institute
Faculty, Genetics Graduate Interdisciplinary Program
Member, Center for Applied Genetics and Genomic Medicine
Member, Asthma & Airways Disease Research Center
Member, UA Sarver Heart Center
(520) 626-7244

Systems genetics approaches to identify mechanisms of complex disease.
Professor, Cellular and Molecular Medicine
Associate Director, Basic Sciences, University of Arizona Cancer Center
(520) 626-2548

Discovering mechanistic insights into the roles of aberrant DNA repair in the development of cancer, autoimmunity, and other diseases.
Professor, Cellular and Molecular Medicine
Associate Director, Asthma and Airway Disease Research Center
Director, Arizona Center for the Biology of Complex Diseases
Professor, BIO5 Institute
(520) 626-6387

Genetic, epigenetic and environmental mechanisms that control susceptibility to complex lung diseases